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ABSTRACT
For head mounted displays, like they are used in mixed reality
applications, eye gaze seems to be a natural interaction modality.
EyeMRTK provides building blocks for eye gaze interaction in
virtual and augmented reality. Based on a hardware abstraction
layer, it allows interaction researchers and developers to focus
on their interaction concepts, while enabling them to evaluate
their ideas on all supported systems. In addition to that, the toolkit
provides a simulation layer for debugging purposes, which speeds
up prototyping during development on the desktop.
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1 INTRODUCTION
The motivation for creating EyeMRTK was to provide the students
and developers with the main elements needed for implementing
eye gaze interactive applications in mixed reality (augmented and
virtual reality). These main elements consist of: 1) the filtered ver-
sion of the gaze ray in 3D as well as the rays defined by head
direction and wand laser, 2) a set of confirmation methods that
can be used for selection, 3) and finally, a component that can be
assigned to any object to make them interactable.

Eye tracking and (eye-)gaze-based interaction is a long researched
subject (e.g. see [Majaranta and Bulling 2014]) and has been rec-
ognized as a relevant interaction modality for augmented real-
ity [Höllerer and Feiner 2004]. Since then, its applicability in this
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domain has been demonstrated by a range of applications [Lee et al.
2011; Nilsson et al. 2009; Park et al. 2008; Toyama et al. 2015]. How-
ever, all of these examples are using proprietary implementations of
gaze-based interaction patterns. This is understandable, as in early
research, almost all devices integrating eye tracking and mixed
reality were proprietary scientific prototypes. This has changed
since then, and today established eye tracking system builders offer
to integrate eye tracking into consumer HMDs for immersive VR.
One of the forerunners of this trend has been SMI [Sensomotoric
Instruments 2018], yet others, such as Tobii [Tobii VR 2019] have
quickly followed. In addition to that, start-up companies offer VR
headsets with build-in eye tracking, such as FOVE [Inc. 2017] or
Looxid Labs [LooxidLabs 2017]. In 2018, the first AR headset with
built-in eye tracking has been shipped [Magic Leap, Inc. 2019].

A toolkit for gaze-based interaction in mixed reality should pro-
vide solutions for the basic interaction mechanisms:

• Selection
• Navigation
• Manipulation

Beyond that, there are system-level interaction techniques, some
operating on a very technical level, such as foveated rendering [Guenter
et al. 2012; Levoy andWhitaker 1990], in which the gaze orientation
is used to optimize the pipeline for generating the digital images.
Others are used to optimize aspects such as information clutter,
e.g. by making visualizations responsive to gaze, realizing a gaze-
over mechanism similar to mouse-over mechanisms known from
HTML/JavaScript.

In the first iteration of the EyeMRTK toolkit, the focus lies on
direct interaction mechanisms. The rationale behind this is that it
is important to provide key advantages of gaze-based interaction to
developers and users, so that employing the technology, which still
requires efforts and financial resources, can be justified. More subtle
uses of gaze-based interaction might have their niche, but may only
come second once the general concept of gaze-based interaction
has been accepted.

Beyond interaction techniques, the use of eye tracking as means
for interaction comes along with some requirements and proce-
dures, that have to be followed to maintain a high-level of usability.
First of all, the devices typically have to be calibrated to the user.
There are many aspects in which our visual systems differ and
some are relevant either on the basic level of computer vision, the
estimation of eye orientation or the interpretation of gaze direction.
Especially users not familiar with gaze-based interaction need to be
supported in setting up optimal conditions. Thus means for measur-
ing and reporting the currently achieved accuracy and contrasting
it to the optimal accuracy or monitoring for drift of the eye tracking
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gear are important, yet often neglected by developers. The toolkit
aims to provide standard wizards and means to communicate these
aspects to the users and guide them towards an optimal calibration
in the future.

2 RELATEDWORK
The design of the present toolkit for eye-gaze-based interaction
is heavily inspired by the available VR toolkits. On the one hand,
it provides a layer of abstraction over different eye tracking sys-
tems. On the other hand, it offers a modular approach of interaction
modelling, which abstracts away from particular hardware specific
implementations. In the discussion of related work, we want to
focus on the interaction layer, to underline the diversity of concepts
and approaches that have been suggested for gaze-based interac-
tion.

2.1 Toolkits for Interaction in AR/VR
The toolkit targets Unity, which is as of today the most universal
engine to realized mixed reality applications on almost all rele-
vant platforms. Unity has introduced its own support for mixed
reality projects (called XR support). However, there are several
toolkits available that provide extended possibilities and examples.
Those toolkits are either provided by system developers, such as
the SteamVR SDK [ValveSoftware 2019] or the Oculus Integration
Package [Oculus 2019], or they are grown by the VR/AR enthusiasts
in community efforts, such like the Virtual Reality ToolKit [The-
Stonefox 2019]. We acknowledge that there are toolkits for other
platforms and frameworks (e.g. [Takala 2014]), which we will leave
out to remain focused. The main contribution of these SDKs is
that they provide an abstraction layer for the available hardware
devices (head mounted displays, controllers) based on components,
such as abstract user models (representing head and hands) and
cameras. Applications built on the basis of these components will
in the best case support multiple VR platforms out of the box or
can at least be easily ported to different platforms. Switching from
one desktop VR setup, e.g. to HTC Vive, to another, such as Oculus
Rift, is for example handled completely by the abstraction layer
(e.g. OpenVR which is the basis of SteamVR) as long as no platform
specific elements have been used, such as e.g. the thumbsticks on
the Windows Mixed Reality Controllers. Switching from desktop
setups, e.g. Oculus Rift, to a mobile setup, such as the Oculus Go,
however, will require a retargeting of the project to the different
binary platform (here e.g. from Windows/x86 to Android/arm), but
the application model itself may stay untouched as long as the
interaction design did not require two controllers or room-scale
tracking, which is not available on the mobile platform.

2.2 Gaze-Based Interaction
Most gaze-based interaction methods have focused on selection
in desktop scenarios. The application of eye-gaze in the desktop
scenario has been described by Jacob [1990]. Many of the techniques
that have been invented for the interaction with 2D user interfaces
via gaze may be translated to mixed reality and spatial interfaces.

Figure 1: The basic architecture of the EyeMRTK. Focus of
this paper are the HAL and the interaction patterns for se-
lection.

2.3 Gaze-Based Interaction in AR/VR
Sibert and Jacob [2000] as well as Tanriverdi and Jacob [2000]
demonstrated at about the same time that eye-gaze-based selection
techniques could outperform other techniques, such as hand-based
pointing or mouse-based interaction for selecting objects in virtual
environments. This was replicated in several following studies with
modified designs of the selection process (e.g. [Cournia et al. 2003],
[Hülsmann et al. 2011]), however, depending on the combination
of aiming and triggering mechanism, the performances differed in
terms of time and accuracy. Since then, many alternative techniques
for gaze-based interaction have been proposed (e.g. [Pfeuffer et al.
2017; Piumsomboon et al. 2017])

An area of human-computer interaction in which eye tracking
has a prominent appearance is assistive computing and in particu-
lar eye-gaze-based typing (see e.g. [Hansen et al. 2004; Majaranta
and Bates 2009]). Gaze-based typing for AR or VR has only been
targeted quite recently (e.g. see [Blattgerste et al. 2018]) and will
be integrated in EyeMRTK in the near future.

3 EYEMRTK
The main building blocks of the architecture of EyeMRTK are
sketched in Figure 1. The toolkit will be incrementally extended
according to the following roadmap:

(1) Hardware abstraction layer (realized, but not focus of this
paper)

(2) Selection techniques (focus of this paper)
(3) Extended interaction techniques, such as text entry
(4) Gaze-pattern detection to classify user behavior (e.g. detect-

ing reading or searching)
(5) Service functions, such as calibration procedures, drift de-

tection and correction, accuracy analysis

The majority of the interaction techniques mentioned in the
related work are based on a combination of three basic operations:
1) user aiming at a target, 2) user confirming the selection, and 3)
system providing feedback during 1) and 2). In the following we
describe how these three main components are implemented in the
toolkit and later how they can be used.
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Figure 2: Data flow for gaze interaction in our toolkit.

3.1 Aiming / Pointing
Aiming in a spatial environment typically requires at least 2-3
degrees of freedom (e.g. rotation in a panoramic VR environment)
and up to 6 degrees of freedom in room-scale VR. Typically, the
aiming direction is represented as a ray, cast into the scene. The
toolkit provides easy access to three main sources of rays in Unity:
the laser beam from the wand controller, head direction ray, and
three variants of gaze rays (left eye, right eye, cyclopean gaze ray)
(Figure 3). Each ray can be set to be displayed in the Scene View
to facilitate debugging. Both the raw and the filtered versions of
the gaze rays are available to use and can be utilized for different
purposes.

Figure 3: The toolkit provides an easy access to various
sources of rays.

3.1.1 Gaze Ray. Themain aim of this toolkit was to make the ap-
plication development separate from the type of the eye tracker and
having a common interface for various eye trackers. The current
version of the toolkit supports Tobii [Tobii VR 2019], SMI [Sensomo-
toric Instruments 2018], and Pupil [Kassner et al. 2014] eye tracking
modules made for VR. The interface controls the calibration evens
and provides the gaze as a ray in 3D using the gaze data received
from the tracker. It further processes the gaze data as follows.

3.1.2 Processing the Gaze Ray. The gaze data are processed
using a smoothing filter that allows the user to smooth the jittery
gaze data during fixations. This is done using filter that average
the last N samples of the gaze data where the value of N can be
set by the user. To prevent the filter from smoothing the saccadic
eye movements and adding a delay after the saccades, the filter
buffer is cleared after each saccade (similar to the method used by
Kumar et al. [2008]). The saccade detection is based on the velocity
where a saccade is identified as parts of the gaze signal where the
velocity goes above a threshold (also defined by the user). The gaze
angular velocity along each direction is calculated using a weighted

moving average over five data samples (to suppress noise) applied
on the gaze angular displacement. The magnitude of the angular
gaze velocity will be taken as the gaze velocity used in the saccade
detector.

3.1.3 Ray Casting. Each ray is provided by a class with a list
containing the name of all intersected objects which will be used
later to indicate whether each ray hits a given object. The Ray-enter
and Ray-exit events are defined as the moment where each ray hits
an object or leaves an object respectively which are monitored
continuously for each object in relation to each ray. This is done
inside the EyeGazeInteractable component which can be assigned
to each individual object. We later further explain the use of this
component.

3.1.4 Ray Pointer. The ray pointer is defined as a point along
the ray which can be shown in the Game View (seen by the user).
The point can be set to be either the hit point where the ray hits an
object (cast trail) or a point always at a fixed distance along the ray
(relative to origin of the ray). Showing the pointer at a fixed distance
insures that the pointer size remains fixed in the view regardless of
the object distance, yet it may introduce stereo conflicts.

3.2 Confirmation methods
Three main methods for confirmation that are provided by the
toolkit are:

(1) Dwell time: The dwell duration can be set differently for
each ray and for each object. Several algorithms have been
suggested to improve the robustness and responsiveness of
dwell time-based triggers (e.g. [Räihä 2015]). For example,
the dwell timer may be set to ignore a few frames of gaze hit-
loss to increase robustness. This prevents the dwell counter
from being reset when gaze leaves the object for a few frames
which may be due to jittery or inaccurate gaze data.

(2) Button press: A set of key status of the active controller used
by the user are detected and they can be used for confirma-
tion.

(3) Basic head gestures [Mardanbegi et al. 2012; Špakov and
Majaranta 2012]: The head gestures are detected based on
the head velocity along the main four directions providing a
set of simple one-stroke head gestures: Head left, head right,
head up, and head down. Head rotations that bring the head
back to its natural orientation are discarded for 1 second
after the first head rotation is made.

3.3 EyeGazeInteractable Component
In order to make the development of gaze interactive applications
easier, EyeMRTK provides a EyeGazeInteractable component that
can be assigned to any object in the scene. This component moni-
tors the status of the object in relation to any of the rays introduced
previously (e.g., GazeEnter event, GazeExit event, and fixation du-
ration). It also monitors the confirmation events in relation to each
object.

To make an object interactive, the EyeGazeInteractable compo-
nent has to be assigned to the object. The pointing and confirmation
status monitored by this component can then be accessed from an-
other asset.
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4 SIMULATION MODE
Another feature in the EyeMRTK is the simulation mode which
permits the developers to implement their gaze-based interaction
concepts without having their VR device or any eye tracker con-
nected to their computer. The gaze point is emulated by moving the
mouse in the screen on top of the Game window in Unity. The cam-
era movements, which are controlled by head rotations in VR, are
emulated using four arrow keys on the keyboard and the controller
key press events are replaced by the left/right mouse clicks.

5 EXAMPLES

Figure 4: Six different examples demonstrating how differ-
ent methods for pointing and selecting can be combined to
interact with an object using the toolkit.

Various examples are included in the toolkit that show different
combinations of the pointing and selecting methods for interaction
with objects which we describe each as follows:

Point and Highlight: This example uses a piece of code that simply
checks the RayEnter event from the EyeGazeInteractable compo-
nent and highlights the object when the ray intersects with the
object (Figure 4.a). The ray used for aiming in the example can be
set to be any of the main three rays.

Visible in Periphery:An object could react differently depending
how far the gaze ray is from the object (θ angle in Figure 4.b). This
example shows an object that is only visible in the periphery and
it disappears as soon as the angle θ goes smaller than a threshold.
The angle θ between the ray and the object can be utilized differ-
ently either as a continuous parameter (e.g., gradually changing
the transparency of the object) or a discreet parameter (e.g., hiding
or showing the object).

Gaze and Head intersection: This example illustrates a simultane-
ous use of multiple rays similar to some of the methods proposed
by [Zeleznik et al. 2005] where the pointing task is done by inter-
secting a hand-held pointing ray with the gaze or head ray. The
object in this example gets selected as soon as multiple rays (e.g.,
gaze and head) intersect with the object (Figure 4.c).

Gaze and Dwell confirmation: This example shows a simple form
of interaction that uses a dwell time method to confirm the selection
when looking at a target. The object gets selected when the gaze
ray fixates on the target for a certain amount of time (Figure 4.d).

Gaze and Button press: In this example, the confirmation is done
by pressing the touchpad of the controller while the gaze ray inter-
sects with the object (Figure 4.e).

Gaze and Head gesture: In this example the pointing can be done
by various types of rays and the confirmation is done by a head

gesture. Head gestures can also be used when the pointing is done
by the head ray even though the head ray may go outside the object
during the head movements. This is possible because the gesture
confirmation takes the pointing direction when the gesture has not
started yet.

6 CONCLUSION
We have presented EyeMRTK, a toolkit for eye-gaze-based inter-
action in virtual and augmented reality for the Unity engine. Fol-
lowing the concepts of VR toolkits, such as VRTK and SteamVR,
EyeMRTK provides a hardware abstraction layer for common eye
tracking systems ready for virtual and augmented reality. On top
of that, it implements several eye-gaze-based interaction patterns
that have been published in the research community.

The toolkit has been made publicly available at the GitHub
repository of the COGAIN association. It can be accessed using
https://github.com/The-COGAIN-Association/EyeMRTK.

Natural future contributions are an extension to cover more
hardware platforms, such as Microsoft HoloLens 2, FOVE, Magic
Leap, as well as desktop-based systems. Main future contributions
on the functional level have already been sketched in the beginning
of the paper, such as gaze pattern detection and extensive support
for maintaining high quality operation of gaze-based interaction
(accuracy, drift, calibration).

6.1 Future Vision: Interaction Benchmarks
Providing a hardware abstraction layer and a library of tested and
evaluated interaction patterns is an important contribution to fa-
cilitate the adoption and dissemination of eye gaze as a viable
interaction modality. Besides applications in games, edutainment
or assistance systems, such patterns could also be used to allow peo-
ple with special needs to participate in mixed reality environments
at all.

One interesting extensions of the toolkit would be the definition
and implementation of interaction challenges, which could be used
to provide interesting benchmarks for the scientific community (e.g.
standardized gaze-based Fitt’s law-like testing batteries). Similar to
image databases in computer vision/machine learning, such inter-
action challenges could help to make contributions to the field of
gaze-based interaction more comparable.

6.2 Sustainability
The toolkit is currently supported by academic institutions and the
progress of work on the toolkit will be ensured by a sequence of
student projects. This work is reflected in a public repository at
GitHub, with the aim to attract contributors from academia and
industry alike. The vision is to provide something similar as VRTK
for the mixed reality eye tracking community.
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